北海道「新商品トライアル制度」認定商品 平成19年度第1回認定

本製品を原因とした

腐食・サビなどの塩害が起こらない

非塩化物使用 カルボン酸系 (R-COOH)主成分

「路通」の4大効果!

- •純度が高いので塩害が起きない
- ・生物・植物等の自然環境への影響がほとんどない
- •散布による金属・鋼材などの腐食・サビなどが抑制される

高い凍結防止・融雪性能

- ・塩化カルシウム並みの〈速攻性〉
- ・塩化ナトリウム並みの〈融雪量〉
- ・再凍結するので長い〈持続性〉
- ・貫入力が強いので優れた〈雪氷剥難性〉

トータルコストで経済的

- •持続性が高いため散布回数が軽減され総合散市費が経済的
- •持続性が高いため緊急散布が少なくなる
- ・鋼材の腐食が少なく、修繕・維持費などを抑制
- ・貯蔵や作業管理が容易で維持管理費の抑制

塩化系凍結防止剤による錆の様子

安全性の向上

- •防氷剤が路面まで貫入し路面雪氷を路面から剥難させる
- •凍結路面がドライシャーベット状になるので制動力が高まる
- ※現行の散布機械や

自動散布装置に使用できます

優れた融雪、凍結防止、雪水剥難の効果。水道水より低い鋼材腐食。

環境にやさしい、

非塩化物系の防氷剤です!

一般的に使われている防氷剤には、今いろいろな問題が浮かび上がっています。

塩化ナトリウム

〈塩化物系塩〉

【メリット】

融雪量大、持続性あり、安価 【デメリット】

速効性低い

金属腐食

車への損傷

生物・植物に悪影響

塩化カルシウム 〈塩化物系塩〉

【メリット】

速効性あり、産業副産物、発熱性 【デメリット】

持続性なし

再凍結

金属腐食

車への損傷

生物・植物に悪影響

尿素 〈非塩物質〉

【メリット】

凍結防止効果、低腐食、安価 【デメリット】

融氷効果極めて低い

富栄養化藻発生

物質変化し異臭発生

生物・植物に悪影響

カルボン酸塩系を主成分にした 防水剤 [路通]です!

[路通]と各種防氷剤の特性値比較

	イオン モル数	凍結温度 ℃	融雪量比率			金属腐食
			30分後	60分後	3時間後	並周隊及
路通	1.47	-2.73	1.39	1.17	0.94	0.03
塩化ナトリウム	1.71	-3.18	1.00	1.00	1.00	1.00
塩化カルシウム	1.02	-1.89	1.52	1.09	0.72	1.32
尿素	0.84	-1.56	0.58	0.40	0.39	0.24
酢酸カルシウム マグネシウム(CMA)	1.03	-1.92	0.14	0.23	0.37	

※塩化ナトリウムを1.00とした場合

- ※イオンモル数および溶液凍結温度は、氷の厚さ1mmの凍結路面に顆粒凍結防止剤を50g/㎡散布した場合の値
- ※融雪量は凍結温度に比例
- ※イオン化速度により融雪速度が変化
- ※カルボン酸系のイオン化は複雑です
- ※塩化物は、ウェットシャーベットと氷の間 に溶液で滑りやすい
- ※防氷剤は、イオン結合の分子がイオン 溶液になって氷を融解する

